28 research outputs found

    Survey on Fully Homomorphic Encryption, Theory, and Applications

    Get PDF
    Data privacy concerns are increasing significantly in the context of Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by next generation networks. Homomorphic Encryption addresses privacy challenges by enabling multiple operations to be performed on encrypted messages without decryption. This paper comprehensively addresses homomorphic encryption from both theoretical and practical perspectives. The paper delves into the mathematical foundations required to understand fully homomorphic encryption (FHE). It consequently covers design fundamentals and security properties of FHE and describes the main FHE schemes based on various mathematical problems. On a more practical level, the paper presents a view on privacy-preserving Machine Learning using homomorphic encryption, then surveys FHE at length from an engineering angle, covering the potential application of FHE in fog computing, and cloud computing services. It also provides a comprehensive analysis of existing state-of-the-art FHE libraries and tools, implemented in software and hardware, and the performance thereof

    Architecture landscape

    Get PDF
    The network architecture evolution journey will carry on in the years ahead, driving a large scale adoption of 5th Generation (5G) and 5G-Advanced use cases with significantly decreased deployment and operational costs, and enabling new and innovative use-case-driven solutions towards 6th Generation (6G) with higher economic and societal values. The goal of this chapter, thus, is to present the envisioned societal impact, use cases and the End-to-End (E2E) 6G architecture. The E2E 6G architecture includes summarization of the various technical enablers as well as the system and functional views of the architecture

    The 6G Architecture Landscape:European Perspective

    Get PDF

    Network coding for efficient vertical handovers.

    No full text
    In 2008, Institute of Electrical and Electronics Engineers (IEEE) published its standard IEEE 802.21 for media-independent handover services. The main scope of this work was to design a technology agnostic mobility platform to perform vertical handovers between heterogeneous networks. Regarding vertical handover procedures, a key issue to address is the control of packet loss, which is responsible for high handover latency and low communication quality. The solution proposed by the standard IEEE 802.21 guarantees reliability by exploiting Automatic Repeat Request (ARQ). However, the use of an acknowledgement service has been demonstrated not to be the best way to handle frame loss. In this thesis, we propose a novel architecture and protocol to efficiently perform vertical handovers. This protocol is called Enhanced-Coded MIH (EC-MIH) and exploits Forward Error Correction (FEC) instead of ARQ. In fact, it performs built-in coding operations to handle erasures of MIH frames. Moreover, we designed a novel hybrid concatenated coding scheme called Hybrid Serial Concatenated Network Code (HSCNC), composed of the serial concatenation of a classical erasure code and systematic Random Linear Network Coding (RLNC). We show via theoretical analysis as well as MATLAB simulations that the concatenation approach can outperform RLNC alone in terms of decoding error probability. Moreover, this work analyses the frame loss of Media-Independent Handover (MIH) protocol during vertical handovers via system level simulations. The proposed HSCNC design is then integrated into the new EC-MIH protocol and evaluated. We then discuss how the new protocol outperforms the legacy protocol in terms of throughput (at TCP layer, above MIH) and handover delay

    Network coding for efficient vertical handovers.

    Get PDF
    In 2008, Institute of Electrical and Electronics Engineers (IEEE) published its standard IEEE 802.21 for media-independent handover services. The main scope of this work was to design a technology agnostic mobility platform to perform vertical handovers between heterogeneous networks. Regarding vertical handover procedures, a key issue to address is the control of packet loss, which is responsible for high handover latency and low communication quality. The solution proposed by the standard IEEE 802.21 guarantees reliability by exploiting Automatic Repeat Request (ARQ). However, the use of an acknowledgement service has been demonstrated not to be the best way to handle frame loss. In this thesis, we propose a novel architecture and protocol to efficiently perform vertical handovers. This protocol is called Enhanced-Coded MIH (EC-MIH) and exploits Forward Error Correction (FEC) instead of ARQ. In fact, it performs built-in coding operations to handle erasures of MIH frames. Moreover, we designed a novel hybrid concatenated coding scheme called Hybrid Serial Concatenated Network Code (HSCNC), composed of the serial concatenation of a classical erasure code and systematic Random Linear Network Coding (RLNC). We show via theoretical analysis as well as MATLAB simulations that the concatenation approach can outperform RLNC alone in terms of decoding error probability. Moreover, this work analyses the frame loss of Media-Independent Handover (MIH) protocol during vertical handovers via system level simulations. The proposed HSCNC design is then integrated into the new EC-MIH protocol and evaluated. We then discuss how the new protocol outperforms the legacy protocol in terms of throughput (at TCP layer, above MIH) and handover delay

    Crisi bancarie ed aspetti economici e giuridici della vigilanza prudenziale e dell'intervento del creditore di ultima istanza con particolare riferimento all'ordinamento comunitario

    No full text
    Dottorato di ricerca in diritto internazionale dell'economia. 8. ciclo. A.a. 1995-96. Coordinatore G. Venturini. Tutori G. SacerdotiConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Autonomic Mobile Virtual Network Operators for Future Generation Networks

    No full text

    Cognitive Software-Defined Networking Using Fuzzy Cognitive Maps

    No full text
    Future networks are expected to provide improved support for several different kinds of applications and services. All these services will have diverse characteristics and requirements to be satisfied. A potential technology to upgrade efficiently and effectively current generation networks is virtualisation via network ’softwarization’. This approach requires the combination of software-defined networking and network function virtualisation. Nevertheless, such a new complex network structure will raise further issues and challenges to be solved both reactively and proactively, without human intervention. In order to achieve that, academia and industry have identified the solution in the implementation and deployment of machine learning. Hence, very likely, 5G (and especially beyond 5G) networks will be cognitive virtualised networks. In that context, this article proposes a cognitive software-defined networking architecture based on Fuzzy Cognitive Maps. First, specific design modifications of Fuzzy Cognitive Maps are proposed to overcome some well-known issues of this learning paradigm. Second, the efficient integration with a software-defined networking architecture is presented and analysed. Finally, the emulation of a sample network scenario via Mininet is provided to validate the effectiveness and the potential of the new cognitive system and its capability to act and to adapt independently of human intervention
    corecore